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Abstract. Current technology used for fires are: meteorological stations 

and satellite image and satellites. This last is a great option, but, from 

space, the fire detection is until it is large enough to be seen from orbital 

altitude. A drone can be used to monitor a forest looking for fire signs 

before the satellite observes it, but a single drone to cover a large acre 

surface is not optimal. A drone swarm with auto-organization capacity, 

equipped with atmospheric sensors that detect fire hazard conditions or 

even a fire in an early stage, needs to be used to optimize the area 

coverage. Implement a heuristic algorithm for drone swarm auto-

organization applicable for wildfire alert and detection. Forest fires are 

a big environmental problem due they are mainly detected until they 

have burned some square kilometers. When these are detected at the 

developed stage, the fire will be difficult to contain. Some wildfires 

affect agricultural along as residential areas causing significant 

economic loses. 

Keywords: wildfires prevention, heuristic algorithms. 

1 Introduction 

1.1 Background 

According to Bala et al [1], the prevention of deforestation and promotion of 

afforestation have often been cited as strategies to slow global warming. Deforestation 

releases CO2 to the atmosphere, which exerts a warming influence on Earth’s climate. 

However, biophysical effects of deforestation, which include changes in land surface 

albedo, evapotranspiration, and cloud cover also affect climate. 

Deforestation has several causes, but wildfires and illegal tree cut, which are man-

made, are the mayor. Current technologies used to detect wildfires are: meteorological 

stations and satellite image and satellites. This last is a great option, but, from space, 
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the fire detection is until it is large enough to be seen from orbital altitude. A drone can 

be used to monitor a forest looking for fire signs before the satellite observes it, but a 

single drone to cover a large acre surface is not optimal.  

A drone swarm with auto-organization capacity, equipped with atmospheric sensors 

that detect fire hazard conditions or even a fire in an early stage, needs to be used to 

optimize the area coverage. Implement a heuristic algorithm for drone swarm auto-

organization applicable for wildfire alert and detection. Forest fires are a big 

environmental problem due they are mainly detected until they have burned some 

square kilometers. When these are detected at the developed stage, the fire will be 

difficult to contain. Some wildfires affect agricultural along as residential areas causing 

significant economic loses. Unmanned Aerial Vehicle (UAV) is mainly known as 

drone. These devices have been flying for some decades now, mainly for military 

purposes. From 2010 to date, these have been more accessible for non-military 

purposes. Photography, real estate, utilities and construction are the main fields that 

have adapted these technologies. 

2 Forest Fire Prevention Using Data-Logging/Transmitting 

Drone Swarm Triad 

2.1 Forest Wild Fires in Chihuahua State 

Forest fires are one of the main causes of forest loss. Vegetation covers in forest 

ecosystems and as a consequence erosion and soil degradation. Historically, our State 

has seen affected by this type of casualties, the years of greatest occurrence were in the 

2011 and 2012, which showed a significant decrease to the year 2015, returning to 

present a rebound during the 2016, with a historical average of 870 annual fires between 

1995 and 2016. 

The main causes of fires are still those related to Agricultural activities, slash and 

burn and the Crops, with a percentage that fluctuates between 25 and 60%. Regarding 

the type of ecosystem (CONAFOR 2015), the most affected is the 

Cold temperate climate, followed by natural pasture. The smaller area 

Report is the arid and semi-arid, as for forests there were no fires. The most common 

type of fire is the superficial fire. 

The year 2015 presented totally atypical conditions, since only Presented 252 forest 

fires, affecting a total area of 1,974.05 ha. The municipalities that historically have the 

largest affected area are Guadeloupe and Bald, Wood, Bocoyna, Guachochi and 

Balleza. The municipalities less affected were Janos, Casas Grandes, Ocampo and 

Urique [2].  

Table 1. Historical data of wild fires in Chihuahua, Mexico. 

YEAR 
QUANTITY 

OF FIRES 

BURNED 

SURFACE 

AVERAGE  

SURFACE 

2006 1,057 18,505 17.51 
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YEAR 
QUANTITY 

OF FIRES 

BURNED 

SURFACE 

AVERAGE  

SURFACE 

2007 625 10,560 16.9 

2008 1,153 17,216 14.93 

2009 842 10,704 12.71 

2010 697 29,316 42.06 

2011 1,687 87,920 52.12 

2012 1,473 55,979 37.47 

2013 1,137 30,554 26.87 

2014 817 17,600 21.52 

2015 251 1,974 7.83 

2016 701 13,353 19.04 

AVERAGE 949 26,698 24 

3 Problem Formulation 

As stated above, forest fires are a problem due the devastation it leaves, environmental 

and economic. Big efforts are applied to solve the wildfire, but due the large extensions 

of the forests, most are detected at a late state that commonly leads to large spread with 

high difficulty to contain.    

Surface recognition is a very common need like for agriculture, disaster relief 

operations, goods delivery, etc. Depending on the area size, this could take a significant 

amount of time.  

For this, there is a need to use tools like a drone, but, also, this need so to have a 

mechanism to efficiently perform these activities and, mainly, surface recognition to 

optimize time and resources. Figure 2 depicts need to coordinate the drone swarm. 

3.1 Formalization of the Problem 

We consider the problem of monitoring a large geographical area using a drone swarm 

to prevent forest fires. The area to be monitored is divided into well identified sub-

areas. A drone swarm is composed by a set of heterogeneous drones, which are located 

at a starting point.  

Thus, the problem that we tackle is to create a schedule containing the assignment 

of drones to geographical sub-areas for monitoring and detecting forest fires, such that 

the schedule completion time is minimized. In figure 1, the geographical area is 

represented in quadrants to define the tasks surface. 
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Fig. 1. Representation of the surface. 

A scheduling system model for planning the visit of drones to geographical sub-

areas consists of the following elements: the geographical area, drones swarm and an 

objective function for scheduling.  

3.2 Large Geographical Area 

The geographical area is denoted by A. Without a loss of generality, we assume that A 

has a square shaped area and does not contain any obstacle. The square shape was 

chosen for simplicity in the model. The area A can be divided into finite sub-areas 

forming a vector A={a0, a1, a2, .. anm} of dimension n-by-m. For convenience, we 

consider a0 as the base from which drones depart and return after complete their 

mission. We use Geo(ai) to denote the geographical position of ai on A. 

3.3 Heterogeneous Drone Swarm 

The Heterogeneous Drone Swarm (HDS) can be represented by a DAG HDS::(D, E). 

D represents the set of heterogeneous drones that compose the swarm. E is the set of 

directed arcs connecting different pairs of drones, so e(di, dj) denotes a precedence that 

indicates that dron dj cannot start its mission until di finishes its mission. For 

convenience, Pred (di)  denotes the subset of drones that directly precede di and Succ 

(di) denotes the subset of drones that directly follow di.  

The entry drone are those with |Pred (di)| = 0 and the output drone are those with 

|Succ (di)| = 0.  For simplicity, in these cases we consider the use of dummy tasks such 

that the dag contains only one entry and output dron. Remembering that the drones are 

heterogeneous, we represent the estimated flying time from the base at a0 with EFT :D 

× A → Int, where EFT(di, aj) denotes the time for a dron di to reach a geographical sub-
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area aj. For simplicity, we consider that the flying time to return to the base at a0 is the 

same than the time to reach a particular area from a0. A dron can be assigned to different 

missions, but it can only perform one mission at time. Thus, at time t we consider avail
 

:D → [0..1],  which captures the availability of each dron at time t. Note that the time 

of the mission of a particular dron is given when it is working at full availability. W (di) 

denotes the time for a dron di to execute certain work once it reaches a geographical 

sub-area. Setup (di) denotes the setup time for a dron to start a new mission. We assume 

that information about the flying and setup time are provided in standard time units, 

compatible with our drone performance measures.  

3.4 Scheduling Problem 

Scheduling drones to geographical areas requires the consideration of four events: (a) 

the time at which the dron starts its mission. (b) The time for a dron to reach a particular 

geographical area. (c) The time for a dron to perform certain work once it reaches its 

geographical area and (d) the time for a dron to return to the base.  

Thus, we first need to predict the time at which a particular dron departs from a0 to 

perform its mission to a particular sub-area and the time in which the dron returns to 

the base. We must first define two mutually referential quantities. EDT(di, am) is the 

Estimated Departing Time of dron di to am, it is calculated by: 

EDT
 
(di, am) = Setup(di)  + max dj ∈Pred(di){ERT(dj, a0) }. (1) 

Setup(di) is preparation time for a dron to start a new mission. It is added to the result 

of the max block in Equation (3), which returns the maximum estimated returning time 

in which each drones in Pred(di) return to the base. This is calculated by ERT(di, a0), 

which denotes the Estimated Returning Time of dron di to the base located at a0 and it 

is calculated by: 

ERT
 
(dj, a0) = EDT(dj, am) + (2 * EFT(dj, am)) + W(dj ) .  (2) 

Once that all the drones have been scheduled, the estimated completion time of the 

schedule is determined by the estimated return time of the output dron. The estimated 

completion time is also known as the schedule make span: 

 ERT(doutput, am.n) .   (3) 

The objective function for drone scheduling aims to create a schedule containing the 

assignment of drones to geographical sub-areas such that its make span is minimized.  

3.5 DERT Algorithm  

The DERT algorithm is based on the well-known list scheduling approach. Our interest 

in this approach is to explore low computational complexity strategies and apply them 

to prevent and combat forest fires with the use of drones. Thus, the DERT algorithm 

basically consists of two phases: The drone prioritization phase in which a priority rank 

assignment is set to each dron. The geographical sub-area assignation phase where 
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each dron is assigned to that geographical sub-area which optimizes a predefined cost 

function. The DERT algorithm is shown in Figure 2. 

I. Drone Prioritization Phase 

We use DRu(di), an upward rank defined as the length of the critical path from dron di 

to the output dron. DRu(di) is calculated recursively as:  

DRu(di) = avg(FTi)+max vj ∈Succ(vi) (DRu(vj)),                   (4) 

where avg(FTi ) is the average of the visit time for a dron di across all sub-areas:  

𝑎𝑣𝑔(𝐹𝑇(𝑑𝑖)) =∑
(𝑑𝑖,𝑎𝑘)

𝑛.𝑚

𝑛𝑚

𝑘=0
. (5) 

II. Sub-area Assignation Phase   

The DERT algorithm considers that a dron can be assigned to several missions, but it 

only can perform once at time. A mission involves to depart from the base a0 to an 

assigned area am, perform a work once it reaches am and return to a0. In our case, the 

work that a dron performs at a particular area is to monitor. The assignation phase where 

a dron is assigned to a geographical sub-area offering the minimum estimated returning 

time, takes O(d x e) time complexity for d drones a e precedencies.  

1. Set the drone flying time. 

2. Set the drone setup time. 

3. Set the drone work time. 

4. Calculate DRu for each dron by traversing the graph from the exit node to the 

entry node and keep the values in L. 

5. Sort the drones in L in descending order of DRu values.  

6. Create a list LSA with the sub-areas composing A. 

7. while there are unvisited areas in LSA do 

8.      Select the first sub-area am from LSA 

9.      for each available dron di  (avail(di)=1)  in L do 

10.            Compute EDT
 
(di, am) value. 

11.            Compute ERT
 
(di, a0) value. 

12.      Assign dron di to the sub-area am that minimizes ERT of di. 

13.        Set avail (di) = 0 from the time between EDT and ERT. 

14. end while 

Fig. 2. DERT algorithm. 
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3.6 Example 

Table 2. Sub-area assignation matrix. 

 

4 Future work 

Overview. In this section, the future work for the drone swarm algorithm is described, 

the next challenges to be taken and opportunities. 

4.1 Fire Propagation Simulation Using Support Vector Machine  

Support vector machine (svm) will be used to analyze a given dataset from the forest 

fires described in this work. The objective of svm is to have a tool so forest fires could 

be characterized and serve as base for propagation prediction, that lead to adapting the 

drone swarm algorithm to search for fire spots in the early stages of wild fires so its 

vicious propagation could be prevented. 

Dron a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 12

1 7 3 9 4 9 4 3 3 1 2 9 9

2 4 7 18 3 2 7 7 2 7 8 7 5

3 8 2 19 4 7 1 2 8 4 4 4 1

4 9 9 17 3 2 7 9 1 2 2 3 5

5 4 8 10 5 9 9 8 8 9 1 4 9

6 5 5 9 8 2 3 5 4 5 8 8 4

7 2 3 11 2 3 3 3 7 3 2 7 3

8 7 5 14 4 7 5 5 5 5 3 3 4

9 3 4 20 3 4 4 4 4 2 4 1 4

10 1 5 2 7 2 5 5 5 10 7 3 2

 
 

(a) Drone Swarm   (b) Area to explore 

c1

c2 c3 c4

c5 c6

c7

vv vva1 a2 vva3 vva4

vv vva5 a6 vva7 vva8

vv vva9 a10 vva11 vva12
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4.2 Illegal Tree-cutting Detection 

Another opportunity detected is that, all around the world, illegal tree cutting is a big 

problem with several causes and big consequences to the global ecosystem as 

mentioned in the introduction of this chapter. This comes to account due one of the next 

work involving the presented heuristic algorithm for drone swarm auto-organization is 

to monitor forests to detect illegal tree cutting. Not only surveying forests with the 

flying unmanned aerial vehicles (UAVs), but equip this swarm agents with image 

recognition based on a machine learning model to be developed. The authors of this 

chapter are now starting to get involved on this endeavor, as depicted in figure 3.  

 

Fig. 3. A wood portion with illegal tree cutting identified by a machine learning model. 

5 Conclusions and Future Research 

The investigation has proven to be functional to adequately detect the beginning of a 

fire and how to give notice to the corresponding authorities. The relevance of our study 

lies in being able to identify the dimensionality (size of the fire). In our future work, 

the propagation of a fire will be analyzed by Support Vector Machine, analyzing the 

factors of the climate as in [3, 4, 5].  

Additionally, using the artificial deep learning intelligence technique, we are looking 

to identify recurring patterns in the beginning of the fire on the forest in the southwest 
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of Chihuahua and how to determine the amount of trees that must be had to properly 

reforest after a large magnitude fire has occurred. 

References 

1. Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A.: Climate change, 

deforestation, and the fate of the Amazon. Science, 319(5860), pp. 169–172 (2008) 

2. CNF: http://www.cnf.gob.mx:8090/snif/seif_chihuahua/programas/combatedeincendios-

prevencion (2017) 

3. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: 

Communications, coordination, and sensing. Ad Hoc Networks, 68, pp. 1–15 (2018) 

4. Colorado, J.,  Pérez, M.G., Mondragón, I., Méndez, D., Parra, C., Devia, C., Martinez, J.J.,  

Molina, L. N.: An integrated aerial system for landmine detection: SDR-based Ground 

Penetrating Radar onboard an autonomous drone. Advanced Robotics, 31(15), pp. 791–

808 (2017) 

5. X. Wang, S. Poikonen, B.L.: Golden: The vehicle routing problem with drones: several 

worst-case results. Optimization Letters ,11(4), pp. 679–697 (2017) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

127

Heuristic Mechanism for Drone Swarm Auto-organization

Research in Computing Science 147(2), 2018ISSN 1870-4069

http://www.cnf.gob.mx:8090/snif/seif_chihuahua/programas/
http://dblp.uni-trier.de/pers/hd/y/Yanmaz:Evsen
http://dblp.uni-trier.de/pers/hd/y/Yahyanejad:Saeed
http://dblp.uni-trier.de/pers/hd/r/Rinner:Bernhard
http://dblp.uni-trier.de/pers/hd/h/Hellwagner:Hermann
http://dblp.uni-trier.de/pers/hd/b/Bettstetter:Christian
http://dblp.uni-trier.de/db/journals/adhoc/adhoc68.html#YanmazYRHB18
http://dblp.uni-trier.de/pers/hd/c/Colorado:J=
http://dblp.uni-trier.de/pers/hd/p/P=eacute=rez:Manuel_Gil
http://dblp.uni-trier.de/pers/hd/m/Mondragon:I=
http://dblp.uni-trier.de/pers/hd/m/Mendez:D=
http://dblp.uni-trier.de/pers/hd/p/Parra:C=
http://dblp.uni-trier.de/pers/hd/d/Devia:C=
http://dblp.uni-trier.de/pers/hd/m/Molina:Jes=uacute=s_J=_Martinez
http://dblp.uni-trier.de/pers/hd/m/Molina:Jes=uacute=s_J=_Martinez
http://dblp.uni-trier.de/pers/hd/n/Neira:L=
http://dblp.uni-trier.de/db/journals/ar/ar31.html#ColoradoPMMPDMN17
http://dblp.uni-trier.de/pers/hd/w/Wang:Xingyin
http://dblp.uni-trier.de/pers/hd/p/Poikonen:Stefan
http://dblp.uni-trier.de/pers/hd/g/Golden:Bruce_L=
http://dblp.uni-trier.de/db/journals/ol/ol11.html#WangPG17

